Code: EE4T5

II B. Tech - II Semester - Regular Examinations - JUNE 2014

MATERIAL SCIENCE (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1. a) Explain briefly metals & alloys, Ceramic material and Organic materials with examples.

 6 M
 - b) Write any eight differences between metals and non-metals based on their properties.

 8 M
- 2. a) Explain p-type and n-type semiconducting materials. 4 M
 - b) Show that, in terms of the Hall electric field E and the current density j, the number of charge carriers per unit volume is given by n = (jB/eE).
 - c) The resistivity of pure germanium at room temperature is 0.47 Ω -m. Find out the carrier density of germanium at the room temperature for the electron mobility of 0.42 $m^2/volt$ -sec and hole mobility = 0.20 $m^2/volt$ -sec. 4 M
- 3. a) Explain the terms dielectric loss and dielectric constant.

 Enlist the factors affecting dielectric loss.

 4 M

b) What do you understand by complex dielectric const	tant?
Explain how the loss factor can be calculated.	6 M
c) Determine the percentage of ionic polarizability in the sodium chloride crystal, which has the optical index refraction and the static dielectric constant 1.5 and 5.	of
respectively.	4 M
4. a) Discuss in brief the Phenomenon of Piezoelectricity,	•
Ferroelectricity and Spontaneous Polarization.	6 M
b) Differentiate between piezoelectricity and ferroelect	ricity.
c) Write the properties of formal actric materials	4 M
c) Write the properties of ferroelectric materials.	4 M
5. a) Discuss the physical, electrical, mechanical, thermal	and
chemical properties of insulating materials?	10 M
b) Write the Engineering applications of insulating mat	erials?
6. Derive expression for Bohr magneton and magnetic di	ipole
moment induced by the field.	14 M
7. a) Explain the properties of ferromagnetic materials.	7 M
b) Explain theory of antiferromagnetic materials.	7 M

- 8. a) Explain how dielectric constant will be measured? 7 M
 - b) Explain how semiconductor properties are measured? 7 M